Transducer-Based Force Generation Explains Active Process in Drosophila Hearing
نویسندگان
چکیده
BACKGROUND Like vertebrate hair cells, Drosophila auditory neurons are endowed with an active, force-generating process that boosts the macroscopic performance of the ear. The underlying force generator may be the molecular apparatus for auditory transduction, which, in the fly as in vertebrates, seems to consist of force-gated channels that occur in series with adaptation motors and gating springs. This molecular arrangement explains the active properties of the sensory hair bundles of inner-ear hair cells, but whether it suffices to explain the active macroscopic performance of auditory systems is unclear. RESULTS To relate transducer dynamics and auditory-system behavior, we have devised a simple model of the Drosophila hearing organ that consists only of transduction modules and a harmonic oscillator that represents the sound receiver. In vivo measurements show that this model explains the ear's active performance, quantitatively capturing displacement responses of the fly's antennal sound receiver to force steps, this receiver's free fluctuations, its response to sinusoidal stimuli, nonlinearity, and activity and cycle-by-cycle amplification, and properties of electrical compound responses in the afferent nerve. CONCLUSIONS Our findings show that the interplay between transduction channels and adaptation motors accounts for the entire macroscopic phenomenology of the active process in the Drosophila auditory system, extending transducer-based amplification from hair cells to fly ears and demonstrating that forces generated by transduction modules can suffice to explain active processes in ears.
منابع مشابه
A Hopf-type generalized van-der-Pol oscillator underlies active signal generation in Drosophila hearing
The antennal hearing organs of the fruit fly Drosophila melanogaster boost their sensitivity by an active mechanical process that, analogous to the cochlear amplifier of vertebrates, resides in the motility of mechanosensory cells. This process nonlinearly improves the sensitivity of hearing and occasionally gives rise to self-sustained oscillations in the absence of sound. Time series analysis...
متن کاملNompC TRP Channel Is Essential for Drosophila Sound Receptor Function
The idea that the NompC TRPN1 channel is the Drosophila transducer for hearing has been challenged by remnant sound-evoked nerve potentials in nompC nulls. We now report that NompC is essential for the function of Drosophila sound receptors and that the remnant nerve potentials of nompC mutants are contributed by gravity/wind receptor cells. Ablating the sound receptors reduces the amplitude an...
متن کاملIn Vitro/in Silico Characterization of Active and Passive Stresses in Cardiac Muscle
We propose a novel, robust, and easily reproducible, in vitro/in silico model system to characterize active and passive stresses in electroactive cardiac muscle using a hybrid experimental/computational approach. We explore active and passive stresses in healthy explanted heart slices in vitro, design a virtual test bed to simulate the in vitro measured stresses in silico, and predict altered a...
متن کاملFabrication and investigation of a transparent and flexible loudspeaker and microphone based on carbon nanotube
Transparent acoustic sensors and actuators are a new generation of acoustic transducers that can create an evolution in the microphone and loudspeakers industries. These transducers with properties like transparency, flexibility, flatness, very low weight and thickness have a great potential for various applications like public speakers, active noise cancelation systems, displays, cell phones a...
متن کاملSingle-element focused ultrasound transducer method for harmonic motion imaging.
The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model firs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008